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The geometrical condition under which simultaneous reflexions occur with a general setting of a crystal 
has been formulated in three equations in terms of reciprocal-lattice vectors. A procedure is described 
to correct the intensity data for structure analysis for the intensity perturbation due to simultaneous 
reflexion. The following practical experimental conditions were taken into account: the effect due to 
the circumstance that the primary and secondary reflexions do not always occur exactly at the same 
time, the divergence and insufficient monochromatization of the incident beam, and a finite size and 
mosaicity of crystal specimen. The correction for simultaneous reflexion was applied to the X-ray 
intensity data from diformylhydrazine. It was shown that non-equal intensities among equivalent 
reflexions could be corrected reasonably by this method. 

Introduction 

The accuracy of measured intensities of X-ray diffrac- 
tion has recently been improved so appreciably that 
the errors due to simultaneous reflexion should not be 
ignored in accurate intensity measurements. 

Simultaneous reflexion occurs when a single crystal 
is so oriented that two or more reciprocal-lattice points 
lie on the sphere of reflexion at the same time. The 
simultaneous reftexion problem separates into two 
parts: determining the crystal orientation at which the 
simultaneous reflexion occurs, and determining its ef- 
fects on the intensities. As to the orientation problem, 
Cole, Chambers & Dunn (1962) proposed a graphical 
method which is useful especially for crystals of higher 
symmetry. However, their method is cumbersome and 
involves the possibility of ignoring some effective 
secondary reflexions. Santoro & Zocchi (1964) pro- 
posed a method for calculating a setting angle for a 
single crystal on a four-circle diffractometer and sug- 
gested a procedure to find out an optimum azimuthal 
angle accompanied by minimum simultaneous reflex- 
ion effects for each reflecting plane. 

The magnitude of intensity perturbation by simul- 
taneous reflexion was estimated by Moon & Shull 
(1964) and by Zachariasen (1965). Moon & Shull 
pointed out that it is comparable to that of secondary 
extinction and that this effect is enhanced especially 
when a strong reflexion acts as a secondary reflexion, 
while the primary reflexion is weak. 

The effect of simultaneous reflexion is mitigated to 
some extent in normal X-ray data collection, owing 
to the divergence and insufficient monochromatization 
of the incident beam and to the finite size and mosaicity 
of the crystal. However, simultaneous reflexion occurs 
more frequently than commonly supposed, and some- 
times the change in intensity of the primary reflexion 
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amounts to as much as 10%. Non-equal intensities 
between equivalent reflexions are partly due to this 
effect. 

In this paper, the orientation problem is treated first 
and then a practical procedure is described to correct 
the intensity perturbation due to simultaneous re- 
fexion. 

Geometrical condition for simultaneous reflexion 

A primary reflexion, say ,u,,2,,s,~°~°~° is measured after 
proper rotations of the crystal to its reflecting position. 
The geometrical condition for secondary reflexion 
hih2h3 can be described in terms of the reciprocal-lattice 
vectors bl, b2 and b3 whose orientations with respect to 
the Cartesian coordinate system attached to the labor- 
atory are assumed to be known for each primary re- 
flexion ,,1,,2,,3~°/'°~'° at its reflecting position. 

Three orthogonal unit vectors, el, e2 and e3 forming 
a right-handed system are defined as follows: 

bl x b 2 e3 × bi bl 
e3=  [bi x b2] ' e 2 - -  [e 3 x bi[ ' e l =  I~]11" (1) 

In Fig. 1 are illustrated a sphere of reflexion, the reci- 
procal-lattice vectors and the vectors e~, e2 and ea; O is 
the origin of the reciprocal lattice. Consider a plane P 
perpendicular to e3 that passes through the reciprocal- 
lattice point G whose coordinates are given as (0, 0, ha) 
with reference to b~, b2 and ha. Let AB a line through 
the centre of the sphere of reflexion C and parallel to 
Ca. This line intersects the plane P at A, and also the 
plane defined by e~ and e2 at B. The plane P cuts the 
sphere of reflexion if 

ICAI s . R - 1 / 2  , 

where R is the radius of the sphere of reflexion. Ob- 
viously, 

C - A = ' ~  +'B.,4 = [ea. (Rj + haba)lea, 
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therefore 

le3. (Rj + haba)] < R ,  (2) 

where j is the unit vector parallel to the direction of the 
incident beam. From this equation the upper and lower 
limits of ha can be evaluated. Next let us take a plane 
Q which passes through a reciprocal-lattice point with 
coordinates (0,h2,0) with references to bl, b2 and b3 
and is perpendicular to e 2. Let a line DAE on P be 
perpendicular to the intersection FF' of the plane Q 
with P. Q passes across the circle of intersection be- 
tween P and the sphere of reflexion if 

]AEI <_r 3 , 
where ra is the radius of the circle of intersection and 
given by 

r 3 =  2 - I C A I 2 = [ R 2 - ( e  3 . (Rj+h3b3)}2]  t/2. 
.---..--+ 

Noting that A C and GD are perpendicular to e2, we 
obtain 

IAEI=IAE.  e21= + O G + G D +  DE) .  e2l 

=I(C +OG+DE).e21 

= I(Rj + h2bz + h3b3) . e21 • 

Thus, we have 

le2. (Rj + hzb2 + haba)l < r3. (3) 

The upper and lower limits of h2 can thus be evaluated 
for each ha from equation (3). 

Now we ask whether a point F, at which a line 
through E and parallel to e~ intersects with the sphere 
of reflexion, is a reciprocal-lattice point or not. Noting 

- - . - - - - - -9-  

that B.4 and AE are perpendicular to e~ ,we obtain 
- > ~ > . . . - - - +  > , ) 

e~ . OF=e~ . (OB+ BA + AE+ EF)=e~ . (OB+ EF) 

= - R(el .  j) + r2 
where 

r2 = IEFI = r ~ -  IAEI 2 

= [r] - (e2. (Rj + hzbz + h3ba)) Zlt/2. 

We can also put 

OF= hlbl + hzb2 + hab3 . 
Hence 

+ r 2 = e~. (Rj + h l b l  + hzb 2 + h3b3) . (4) 

The value of hi can be evaluated from equation (4) 
for each h2 and ha. The point (hl, h2,h3) is decided to 
be a lattice point if h~ is an integer. 

The procedure described above can be used to check 
whether any lattice point lies on a sphere of reflexion 
for a known crystal orientation giving a primary re- 
flexion, so that we can tell when the condition for the 
simultaneous reflexion occurs. 

In tens i ty  e f fec ts  

When two or more reciprocal-lattice points are on the 
sphere of reflexion at the same time, the change in the 
power of the primary beam API(T) is given by the 
expression 

APt(T) 
- { ~ (-roJoro/o-roi lor,  ll+roflor,l,) (5) P0(0) 

(Moon & Shull, 1964). This equation is valid when the 
crystal may be considered as a flat plate with a thick- 
ness T and large compared with the incident-beam 
cross section. Here P0(0) is the power of the incident 
beam, l~ is the path length of the ith beam and ru, 
called the linear reflexion coefficient, stands for the 
exchange of power from i to j per unit path length. It 
is assumed that the angular width associated with the 
incident-beam collimation and wavelength spread is 
much larger than the width of a perfect-crystal reflexion 
curve, but is much smaller than the width of the 
mosaic distribution, rtj is given by 

rlj = Qi j  W(zJOi j )  , 

where Q~j stands for the integrated reflectivity per unit 
volume of a small crystallite, and W(AO~j) is the mosaic 
distribution function which is usually assumed to be 
of Gaussian form: 

W (AOt:)= [(Z~)i/2rl] -1 exp [ -  (AOij)2/2ti2] , 

where AO~j is the deviation in Bragg angle from the 
mean of the distribution and r/is the mosaic spread. It 
can be shown that 

AO~j = (sin V cos 2' cos (/sin 20)uAe = K~jAe, 

where Ae is a small change in angle about the rotation 
axis and the other angles ~,, 2' and ~ as defined in Fig. 
2 in the same way as those of Moon & Shull (1964). 

The distribution function W may now be written in 
terms of the rotation angle Ae. The renormalized form 
is given by 

W ( A e )  = K~j[(270t/ztl] -1 exp [ -  (K~jAe)2/2?I 2] 

• . . ~  . . . . . . . . .  C 

. . . . .  | 

Fig. 1. Illustrating the condition of simultaneous reflexion in 
reciprocal space. FF" and DE are parallel to el and e2 
respectively. 
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and the reflectivity expression becomes 

rij= Q~j[(2n)l/2rl] - 1 exp [-(K~jAe)2/2rl2] . 

In applying equation (5), the following points should 
be taken into account. 

(a) The primary and secondary reflexions do not 
always occur exactly at the same time. The delay be- 
tween the two reflexions can be expressed in terms of 
the angle ~" about the rotation axis to bring the second- 
ary reciprocal-lattice point onto the sphere after the 
primary one has passed it. In Fig. 3, a reciprocal-lattice 
point S near the sphere of reflexion is shown. The 
reciprocal-lattice point S reaches T on the surface of 
the sphere after the rotation { around the axis of 
rotation O V. ~ is expressed as 

We must replace At in r0~ and rl~ in (5) by Ac+~ in 
order to take this delay into account. 

(b) Because of the divergence of the incident beam, 
finite size and the mosaicity of the crystal and wave- 
length spread, the surface of the sphere of reflexion 
should be considered as having finite thickness. How- 
ever, in place of directly taking account of this circum- 
stance, we consider the function W(Ae) not as a dis- 

Fig. 2. Definition of angles ~,, Z and ~. The plane in which q/ 
is measured is perpendicular to the rotation axis of the 
crystal, s, and sj denote the directions of the ith and j th  
beams, respectively (Moon & Shull, 1964). 

Fig. 3. Illustrating the definition of ( in (8). A reciprocal-lattice 
point S is rotated around the rotation axis O V of the crystal 
and reaches T on the reflexion sphere after the rotation (. 
SX and SC intersect the sphere at U and W respectively. 

tribution function of mosaicity but as a function rep- 
resenting the broadening of a peak profile. Thus the 
mosaic spread r/is replaced by x/2]/2-In 2 where x is 
the half width of the reflexion peak concerned. When 
x cannot be measured for each refiexion, we assume 
that x equals to A + B  × sin 20; A and B are determined 
by a least-squares procedure based on the peaks of 
known half width. 

(e) Since a crystal specimen is usually neither a flat 
plate nor large compared with the incident-beam cross 
section, we assume that the crystal is a sphere which 
is small enough compared with the incident-beam 
cross section and replace the path lengths 1i by nr/2, 
the mean path length of a sphere of radius r. 

(d) In the case of X-ray diffraction, the polarization 
factor Ptj should be considered as introduced by Za- 
chariasen (1965). 

With the effects mentioned above combined equation 
(5) takes the form: 

API(T)  7~2r 2 
-- 8 ~ (--polrolPo~ro~--Polrolpl~qi Po(O) 

+poiroipnra) , (6) 
where 

Q,jQ=,, K~ 2 
rijrm, exp [ 

-- 2nrhjrlmn t . -  2---~-j Atz . . . . .  ] 2rffm" (Ag + ~-)2 

(7) 
and from (b), rhj is expressed in terms of xtj 

xlj 
~hj-- (8 In 2) 1/2 " (8) 

The equation (6) can be easily integrated to give 

! l , 

- 8 Qoi ~ ( - G o l : o i - G o l ; u + G o ~ ; n )  

[ Q°'~ [ Qa'~] (9) + gol; li \ Qoi ! \ Qoi ] ] ' 

where 

(e,,) t em.  
G~j;mn=g~j;mn k-~oi \ Q0x ] '  

J 

gij;mn-- rhy "-~mnf 2r/~ , 2t7~" 

and 
o o  

f ( a , b ) =  I _ e x p  [ - { a a d  +b(a~+O2}laa~ 

1/= { ) = ~ e x p  - ~ - b f f 2  . (10) 

The first and the second terms of equation (9) represent 
a diminution, and the third one an increase in the 
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primary intensity respectively, giJ;mn is the damping  
term mentioned above. 

Detection of secondary reflexions 

A program was written in For t ran to detect the secon- 
dary reflexions on the basis of  equations (2) to (4). 
Indexing of secondary reflexions around the scattering 
vector in the case of Ge 222 reflexion was also carried 
out by Cole, Chambers  & Dunn  (1962). The present 
calculation was done for Cu K~I, at every 0.01 ° around 
the scattering vector, assuming that the crystal speci- 
men at 20 °C is so mounted on a four-circle diffractom- 
eter that the directions of  the reciprocal-lattice vec- 
tors b2 and b3 coincide with those of  the incident beam 
and of  the axis of  rotation respectively; in other words, 
the U matrix (Busing & Levy, 1967) becomes a unit 
matrix. The results, listed in Table 1, agree well with 
those obtained by Cole et al., (1962). 

Table 1. Calculated secondary reflexions 

~, is the rotation angle around the scattering vector. Primary 
reflexion: Ge 222, 2= 1.54051 /~ 

Secondary Secondary Secondary 
reflexion ~ reflexion g reflexion 

220 180-00 2[24 190.95 153 201.87 
002 180-00 2[44 191.00 151 202.08 
531 182.10 335 193-83 004 202.22 
15T 183.48 35T 193.97 ~15 202.33 
240 184.11 13T 194.16 ]]-3 205.18 
02~ 184.12 533 195.73 TT1 208.21 
113 185.43 204 195.77 2[40 209.14 
042 186.02 260 196-85 ~62 209.14 
T35 187.74 2[02 198-17 3--]'3 209.53 
22g 190.85 T15 198.31 ~13 209.90 
~4~ 190.85 T5T 198.56 33T 210.47 
060 190.85 062 200.05 531 210.10 
242 190-85 31T 201.87 

Intensity correction 

X-ray and neutron diffraction analyses of diformyl- 
hydrazine have been carried out. The crystal data 
(from Tanaka  & Saito, 1975) are space group P2x/a, 
a=8 .9874(15) ,  b=6-2617 (7), c = 3 . 5 8 4 6 ( 7 )  /k, t =  
113.05 (2) ° at 23°C, Z = 2 .  A program written in For- 
t ran was used to correct the intensity perturbation,  as 
follows. 

Experimental 

The crystal was shaped into a sphere of  radius 0.33 m m  
on a sheet of  wet filter paper. The path length of the 
incident beam between the source and the graphite 
monochromator  was 50 mm, and the distance between 
the monochromator  and the crystal was 225 mm. A 
collimator,  0.25 m m  in radius, was placed at a distance 
of  196.5 m m  from the monochromator .  

As the magni tude of  per turbat ion due to the simul- 
taneous reflexion effect was expected to be small in 
this case, the correction for the simultaneous reflexion 

effect is meaningful  only when other errors, in partic- 
ular those due to statistical counting, are at low levels. 
Thus each reflexion was repeatedly measured using 
Mo Kc~ radiat ion (2=0.7107 /k) to reduce statistical 
counting errors to less than one per cent of  the observed 
structure factor except for very weak reflecions. The 
max imum number  of  repetitions was ten. Intensities of  
Friedel pairs were averaged since the geometrical 
conditions for the simultaneous reflexion effect are the 
same for the two reflexions in the pair. 

It was found, as an important  feature revealed after 
the correction, that intensity differences between sym- 
metry-related reflexions larger than the statistical 
counting error can be mainly ascribed to the effect of  
simultaneous reflexion, though small differences re- 
mained unexplained. Some typical examples for which 
the perturbation is more than twice its statistical count- 
ing error are listed in Table 2, where CrF represents the 
largest value among statistical errors and the difference 
between the observed structure factors of  Friedel 's  
pair. AF is (Fo-Focor)/Fo, and hkl and heel are symme- 
try-related reflexions. The m a x i m u m  value of correc- 
tion is as large as 17 %. The number  of  Friedel pairs 
perturbed more than one per cent is 83, out of  2888 
pairs, and those perturbed more than S per cent of  its 
aF are tabulated in Table 3. The fluctuation between the 
symmetry-related reflexions could be definitely reduced 
for about  60 % of  the reflexions. The remaining 40 % 
may be affected by uncertainties in r /and  in the setting 
parameters.  In the final difference synthesis, bonding 
electron density as well as lone-pair electron density 
was clearly visible. 

Table 2. Primary reflexions for which the perturbations 
are more than twice their statistical errors 

hkl and hkl are symmetry-related reflexions. Data are for 
diformylhydrazine (X-ray diffraction). 

hkl Fo Four trp AFx 102* 
532 186"54 180-51 2"49 3"34 
5~2 178"77 178"81 1"18 -0"01 
;~1~2 131"22 130"21 0"56 0"78 
2[22 129"70 129"71 0-57 -0-01 
T~2 95"60 93"51 0"50 2"22 
2[42 94"12 94"13 0"74 -0-01 
1211 67"77 66"43 0"48 2"02 
141 65"95 65-97 0"40 - 0"03 
041 55"81 54"87 0-92 1-71 
0~1 55"24 55"35 0"51 -0"19 
232 48"25 44"79 1"11 7-72 
232 41 "69 41 "69 0"67 - 0"00 
432 45"39 43"65 0"73 3"98 
432 44"39 44"40 0"32 - 0-02 
6~2 41 "27 39"59 0-44 4"25 
642 38-61 38"69 0"41 - 0"21 
4211 29"30 25"16 0"77 16"44 
441 25"28 25"28 0"40 - 0"02 
~(;3 17"12 14"60 0"75 17"32 
2[63 15"14 15"14 0"86 -0"02 
261 14"14 12"15 1"60 16"43 
2i~1 10"16 10"16 2"10 -0"03 

* AF= (Fo- FooodlFo 
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Table 3. Numbers o f  reflexions which are perturbed by 
more than S percent o f  their statistical errors 

S S S S 
10 634 50 96 80 60 150 29 
20 296 60 86 90 54 200 19 
30 187 70 72 100 48 300 9 
40 119 

Discussion 

From (5) the following criterion has been drawn by 
Coppens (1968). Significant intensity changes due to 
simultaneous reflexion will be avoided when no recip- 
rocal-lattice points representing strong reflexions are 
located on either the sphere of reflexion corresponding 
to the incident beam, or that corresponding to the 
primary diffracted ray. Therefore, if the lattice points 
corresponding to strong reflexion are on the sphere of 
reflexion, the large simultaneous-reflexion effect can 
be avoided by rotating the crystal around the scattering 
vector. However, all simultaneous-reflexion effects 
cannot be avoided in this way, especially for a crystal 
of large unit cell and in the case of neutron diffraction. 
This effect occurs so frequently that its elimination is 
not only impossible but the accumulation of the effects 
may become significant. In the case of neutron diffrac- 
tion the divergence of the incident beam, wavelength 
spread and the size of the crystal are very large, so that 
the chance of a simultaneous-reflexion effect occurring 
is very high and the damping term g~j;mn in (10) be- 
comes small. In addition, a long path length may 
contribute directly to this effect, as seen in (10). This 
is one reason why we have proposed a practical method 
to correct this effect. 

In the case of Ge 222 described above, it takes no 
more than one second on a FACOM 270-30 computer 
to calculate the secondary reflexions at a given angle 
around the scattering vector. The computing time can 
be greatly reduced in our method, since only the recip- 
rocal-lattice points in the vicinity of the surface of 
the sphere of reflexion are checked. 

There are a few remarks concerning the correction 
procedure. 

(a) Generally, hx calculated from (4) is not an in- 
teger. Let the value of hx be/-/1 +AH~, where/-/1 is an 
integer and - 0 . 5  < AH~ <_ 0.5. I fAHI  is small, the recip- 
rocal-lattice point S(Hxh2h3) lies close to the surface 
of the sphere of reflexion. The criterion used to decide 
whether or not S(H~h2h3) takes part in the simultaneous 
reflexion is as follows; if 

CHlh2h 3 ~ C 0 

S(Hxh2h3) is assumed to cause the simultaneous refex- 
ion, where C ° was fixed to 0.03 radian in this case. This 

0 0 0  value is slightly larger than the peak widths ACOhanzh3 
of most of the primary beams with 20 below 120 ° . The 

delay angle Cnlh2n3 can be obtained as a function of A H  
as follows: since S is near the surface of the sphere of 
reflexion as illustrated in Fig. 3, we have 

[SU[ = A R  s e c  ~)~rCi_11h2h3 c o s  0~, 

where r is the distance between S and the axis of rota- 

tion OV, AR=ISwI=IIC--SI-R I is the distance be- 
tween S and the surface of the sphere and c~ = / _  TSU. 
Since S lies on FF' which is parallel to bl and is close 
to F, we obtain 

IFSI = IbllAnl "~ AR see ft. 

From the above two equations we have 

A n l = ( r  cos y cos ~/lb~l cos c~)Cnlh2h3-- K s C H l t z 2 h  3 • (11) 

Thus if 
AHI <_KsC ° , (12) 

the correction for intensity perturbation due to simul- 
taneous reflexion was carried out. 

(b) We have approximated the peak shape as Gaus- 
sian. It has a long tail around the peak due to the ex- 
ponential character of this function. Consequently, even 
when the delay angle C was large and the simultaneous 
reflexion effects were expected to be negligible, the 
calculated perturbation became significant if Q0i or 
Qu was large compared with Q0~. In order to avoid 
this overestimation, the correction was not made when 
the delay angle C was greater than C× (?/01/K~)l'ff- 
rlodKgt) etc., where C is a constant and (2 In 2)l/217JK~j 
is an effective half width of the reflexion ij. The differ- 
ence between equivalent reflexions became smallest 
when C was 0.375 in this case, though most of the 
corrected values did not vary with C. 

(c) When the half widths of most of the reflexions 
were measured and used for correction, it turned out 
that the results were much improved compared with 
the results calculated by A + B × s i n  2 0 for the half 
width. This fact indicates that the method of correction 
is most successful when an observed half width is used 
as well as accurate setting parameters. 
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